会议室预约 English 北大主页
  • 首 页
  • 学院概况
    院长寄语
    学院简介
    组织体系
    委员会
    联系我们
  • 系所中心
    集成微纳电子系
    集成电路设计系
    设计自动化与计算系统系
    集成微纳系统系
    集成电路先进制造技术研究中心
  • 师资队伍
    院士风采
    专职教师
    客座教授
    博士后
    光荣退休
  • 科学研究
    科研动态
    科研获奖
    科研项目
    科研成果
  • 党建思政
    党组织概况
    党建动态
    工会风采
  • 人才培养
    本科生招生
    研究生招生
    研究生培养
    院内公告
  • 平台基地
    工艺实验室
    EDA实验室
    教学实验室
    引智基地
  • 学生工作
    新闻公告
    党团建设
    实习就业
    院内通知
  • 招贤纳士
    教师招聘
    博士后招聘
    其他招聘
  • 校友中心
    新闻公告
    校友动态
    校友风采
会议室预约 English 北大主页
  • 首 页
  • 学院概况
    院长寄语
    学院简介
    组织体系
    委员会
    联系我们
  • 系所中心
    集成微纳电子系
    集成电路设计系
    设计自动化与计算系统系
    集成微纳系统系
    集成电路先进制造技术研究中心
  • 师资队伍
    院士风采
    专职教师
    客座教授
    博士后
    光荣退休
  • 科学研究
    科研动态
    科研获奖
    科研项目
    科研成果
  • 党建思政
    党组织概况
    党建动态
    工会风采
  • 人才培养
    本科生招生
    研究生招生
    研究生培养
    院内公告
  • 平台基地
    工艺实验室
    EDA实验室
    教学实验室
    引智基地
  • 学生工作
    新闻公告
    党团建设
    实习就业
    院内通知
  • 招贤纳士
    教师招聘
    博士后招聘
    其他招聘
  • 校友中心
    新闻公告
    校友动态
    校友风采

科学研究

  • 科研动态
  • 科研获奖
  • 科研项目
  • 科研成果
科学研究
  • 科研动态
  • 科研获奖
  • 科研项目
  • 科研成果
首页 - 科学研究 - 科研成果
科研成果

北京大学集成电路学院/集成电路高精尖创新中心王路达团队在纳流体忆阻器及仿生神经形态应用领域取得重要进展

发布时间:2025-04-02 浏览量:

在并行性、连续性、低功耗的智能计算架构的需求背景下,基于模拟生物突触的仿生神经形态器件有望实现类脑信息处理范式,逐渐成为众多研究者关注的热点领域。纳流体忆阻器利用水相环境的离子作为载流子,具有表面性质可调、生物兼容性好等优点,在神经形态突触应用及脑机接口等领域具有广泛的应用前景。但是,现有纳流体忆阻器通道长度基本在微米尺寸,存在着输运效率低、能耗大及难以规模化加工等问题,且无法从结构上实现对(亚)纳米长离子通道的精准仿生设计,器件设计方面的不成熟制约了纳流体忆阻器更深层次的发展及应用。原子级厚度的石墨烯等二维材料具备优异的稳定性和加工简单等优点,为基于纳流体忆阻器的神经形态应用研究提供了崭新平台。

图1基于二维材料固态纳米孔的仿生纳流体忆阻器设计及实现

针对纳流体忆阻器件及神经形态应用现存的挑战,北京大学集成电路学院王路达课题组借助微米纳米加工技术全国重点实验室平台,通过精确加工特定电导的二维材料固态纳米孔结构,创新发展了一种新型仿生纳流体忆阻器件(如图1)。本研究基于不同价态载流子的静电作用有效地实现了对器件滞回曲线和电导开关比的调控,并结合理论模拟明晰了纳米孔结构的表面电荷及离子动力学过程对纳流体忆阻器的影响机制。进一步基于器件的电导态累积效应和非易失记忆特性,实现了对突触可塑性和类脑学习功能的模拟,在毫秒量级脉冲宽度下实现了每脉冲约0.546 pJ的能耗,优于当前报道的最先进的纳流体忆阻器件。

该研究利用埃米长限域空间内离子的动力学输运构建了纳流体忆阻器件,不仅有助于解决纳流体神经形态应用在器件层面的瓶颈问题,而且助力于深入理解大脑神经活动的机理,为实现类脑人工智能提供了新的思路。相关成果以“Nanofluidic Memristive Transition and Synaptic Emulation in Atomically Thin Pores”为题,发表在《Nano Letters》上(https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06297)。北京大学集成电路学院2020级博士研究生宋瑞洋、2023级博士研究生王鹏为共同第一作者,王路达研究员为通讯作者。以上研究工作得到了国家重点研发计划、国家自然科学基金等项目支持。



地址:北京市海淀区颐和园路5号 微纳电子大厦

邮编:100871

电话:010-62751787


版权所有©北京大学

集成电路学院公众号 北大校友会公众号